Description
Deep Learning is a set of powerful algorithms that are the force behind self-driving cars, image searching, voice recognition, and many, many more applications we consider decidedly “futuristic.” One of the central foundations of deep learning is linear regression; using probability theory to gain deeper insight into the “line of best fit.” This is the first step to building machines that, in effect, act like neurons in a neural network as they learn while they’re fed more information. In this course, you’ll start with the basics of building a linear regression module in Python, and progress into practical machine learning issues that will provide the foundations for an exploration of Deep Learning.
- Access 20 lectures & 2 hours of content 24/7
- Use a 1-D linear regression to prove Moore’s Law
- Learn how to create a machine learning model that can learn from multiple inputs
- Apply multi-dimensional linear regression to predict a patient’s systolic blood pressure given their age & weight
- Discuss generalization, overfitting, train-test splits, & other issues that may arise while performing data analysis
Like what you’re learning? Try out the The Advanced Guide to Deep Learning and Artificial Intelligence next.


Reviews for Deep Learning Prerequisites: Linear Regression in Python
Click Here to Read Reviews for Deep Learning Prerequisites: Linear Regression in Python >> Click Here to Submit Reviews for Deep Learning Prerequisites: Linear Regression in Python >>